31 research outputs found

    Conflict-Free Coloring of Intersection Graphs of Geometric Objects

    Full text link
    In FOCS'2002, Even et al. introduced and studied the notion of conflict-free colorings of geometrically defined hypergraphs. They motivated it by frequency assignment problems in cellular networks. This notion has been extensively studied since then. A conflict-free coloring of a graph is a coloring of its vertices such that the neighborhood (pointed or closed) of each vertex contains a vertex whose color differs from the colors of all other vertices in that neighborhood. In this paper we study conflict-colorings of intersection graphs of geometric objects. We show that any intersection graph of n pseudo-discs in the plane admits a conflict-free coloring with O(\log n) colors, with respect to both closed and pointed neighborhoods. We also show that the latter bound is asymptotically sharp. Using our methods, we also obtain a strengthening of the two main results of Even et al. which we believe is of independent interest. In particular, in view of the original motivation to study such colorings, this strengthening suggests further applications to frequency assignment in wireless networks. Finally, we present bounds on the number of colors needed for conflict-free colorings of other classes of intersection graphs, including intersection graphs of axis-parallel rectangles and of \rho-fat objects in the plane.Comment: 18 page

    On Convex Geometric Graphs with no k+1k+1 Pairwise Disjoint Edges

    Full text link
    A well-known result of Kupitz from 1982 asserts that the maximal number of edges in a convex geometric graph (CGG) on nn vertices that does not contain k+1k+1 pairwise disjoint edges is knkn (provided n>2kn>2k). For k=1k=1 and k=n/2βˆ’1k=n/2-1, the extremal examples are completely characterized. For all other values of kk, the structure of the extremal examples is far from known: their total number is unknown, and only a few classes of examples were presented, that are almost symmetric, consisting roughly of the knkn "longest possible" edges of CK(n)CK(n), the complete CGG of order nn. In order to understand further the structure of the extremal examples, we present a class of extremal examples that lie at the other end of the spectrum. Namely, we break the symmetry by requiring that, in addition, the graph admit an independent set that consists of qq consecutive vertices on the boundary of the convex hull. We show that such graphs exist as long as q≀nβˆ’2kq \leq n-2k and that this value of qq is optimal. We generalize our discussion to the following question: what is the maximal possible number f(n,k,q)f(n,k,q) of edges in a CGG on nn vertices that does not contain k+1k+1 pairwise disjoint edges, and, in addition, admits an independent set that consists of qq consecutive vertices on the boundary of the convex hull? We provide a complete answer to this question, determining f(n,k,q)f(n,k,q) for all relevant values of n,kn,k and qq.Comment: 17 pages, 9 figure

    Characterization of co-blockers for simple perfect matchings in a convex geometric graph

    Full text link
    Consider the complete convex geometric graph on 2m2m vertices, CGG(2m)CGG(2m), i.e., the set of all boundary edges and diagonals of a planar convex 2m2m-gon PP. In [C. Keller and M. Perles, On the Smallest Sets Blocking Simple Perfect Matchings in a Convex Geometric Graph], the smallest sets of edges that meet all the simple perfect matchings (SPMs) in CGG(2m)CGG(2m) (called "blockers") are characterized, and it is shown that all these sets are caterpillar graphs with a special structure, and that their total number is mβ‹…2mβˆ’1m \cdot 2^{m-1}. In this paper we characterize the co-blockers for SPMs in CGG(2m)CGG(2m), that is, the smallest sets of edges that meet all the blockers. We show that the co-blockers are exactly those perfect matchings MM in CGG(2m)CGG(2m) where all edges are of odd order, and two edges of MM that emanate from two adjacent vertices of PP never cross. In particular, while the number of SPMs and the number of blockers grow exponentially with mm, the number of co-blockers grows super-exponentially.Comment: 8 pages, 4 figure
    corecore